
hr. J. Hear Mars Transfer. Vol. 31, No. 11, pp. 2227-2238, 1988 0017-9310/88 $3.OO+O.C0 

Printed in Great Britain 0 1988 Pergamon Press plc 

The effect of matrix longitudinal heat conduction 
on the temperature fields in the 

rotary heat exchanger 
T. SKIEPKOt 

Department of Heat Engineering, Technical University of Biaiystok, ul. Wiejska 45A, 
15-35 1 Bialystok, Poland 

(Received 30 Jury 1987) 

Abstract-In this paper two models describing transport phenomena in rotary heat exchangers are con- 
sidered : one disregarding and the other including heat conduction in the matrix. Both models are described 
by the system of energy conservation equations which is solved by analytical methods. On the basis of 
these solutions the effect of the matrix longitudinal heat conduction on the temperature fields of gases and 

matrix is studied. 

1. INTRODUCTION 

APPLICATIONS of the rotary heat exchangers as ther- 
mal regenerators for steam boilers, gas turbine instal- 
lations or ventilation and air conditioning systems 
are generally known. This is due to large and non- 
expensive heat transfer area per unit volume in the 
rotary regenerators (- 400 m2 rnp3 for steam boiler 
regenerators and as many as -2000 m2 me3 for gas 
turbine installations). Thus the counterflow rotary 
heat exchangers combine compactness with high per- 
formance. 

Heat transport phenomena in the rotary exchangers 
have been modelled by systems of partial differential 
equations formulated with various simplifying 
assumptions. These models for steady-state operation 
can be classified into two categories : 

(a) taking into consideration both convection and 
exchange terms [l-9] and thus conservation energy 
equations in non-dimensional form can be written as 

al!3 ae. 
I= aj(-Sj+Bj), 2 = bj(9j-Oj), j= 1,2; 
aP 

(1) 
(b) considering not only the terms mentioned 

above but also the term of matrix longitudinal heat 
conduction [lO-141 so that the governing equations 
in dimensionless form are as follows : 

@I 

For both categories of the models the balance equa- 
tions are solved either analytically [I, 4, 69, 141 or 
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numerically [2, 3, 5, l&13]. These solutions are usu- 
ally presented in the form of a relationship II--NTU, 

when heat conduction is neglected [S] or q-NTU, at 
1* = const. taking heat conduction into consideration 
[ll, 151. In some papers [8, 9, 12-141 the solutions of 
the energy equations lead to the determination of 
temperature fields of the gases and matrix. The matrix 
thermal-conduction effect was evaluated by Mondt 
[lo]. He found that the matrix thermal conduction 
causes a reduction of the temperature drops in the 
rotary heat exchanger. 

The purpose of this paper is to determine the effect 
of the matrix longitudinal heat conduction on the 
temperature fields of the gases and matrix. The effect 
of the heat conduction is analysed by comparing the 
calculated temperature fields obtained from the solu- 
tions of equation systems (1) and (2). The solution of 
the system of equations (1) can be easily expressed by 
Bs and Bes functions which have been applied in 
the theory of heat exchangers by tach [ 161. The solu- 
tion for the system of equations (2) was taken from 
ref. [14]. 

2. THE SOLUTION AT 1, = 0 

The coordinate system for these considerations is 
shown in Fig. 1. The energy conservation equations 
can be written in the form 

at, 
(l-&)p,c,o~ = cl,Y(T,-t,) 

aq 
EP~c~~v,~ = cc/Y(tj-Tj), 

(3) 

j=1,2 J 

with boundary conditions 

T,(Al= 0) = T’,(4) 

T2(4, i = 0) = T;(4) 

(4) 

(5) 
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a,b,c coefficients All thermal conductivity of matrix 
Ak, D, coefficients of the series for heating and p*, v* roots of the transcendental equations 

cooling zones, respectively for heating and cooling zones, 

5 gas specific heat at constant pressure respectively 

Cl33 metal matrix specific heat P> Pm density of gas and metal matrix, 

c, coefficients of the numerical quadrature respectively 
for integral equations ttt zone angle 

d distance between temperature fields w rotational speed. 
h matrix height 

rtrSl real roots of the characteristic 
equations for heating and cooling 

Subscripts 
1 heating zone 

zones, respectively 2 cooling zone 
r2,s2 real parts of complex conjugate roots k serial number 

of the characteristic equations for m matrix. 
heating and coohng zones, respectively 

r3, ~3 imaginary parts of complex conjugate 
roots of the characteristic equations Superscript 

for heating and cooling zones, at the inlet. 

respectively 
t matrix temperature Dimensionless quantities 
T gas temperature NTU number of transfer units for gas, 
V velocity of gas in matrix a YhI@pcpv) 
Y matrix heat transfer area per unit NTU, number of transfer units for metal 

volume. matrix, c( Y$!( 1 - s)~,c,~] 
NTU, overall number of transfer units 

Greek symbols Pe Peclet number of metal matrix, 

;a 

heat transfer coefficient LL~/(~rn~m~h2)1 - ’ 
coefficients Z longitudinal coordinate, iJh 

L#J 

porosity 9 matrix temperature, (t- T’#(T’, - T;) 
coordinates, along the matrix in the Q gas temperature, (T- T;)/( T; - T1) 
direction of gas flow and rotation of 1* conduction parameter (Bahnke and 
the matrix, respectively Howard [ll]) 

r exchanger heat transfer effectiveness rp coordinate in direction of rotation, ~$I$J. 

I f heafing Lone ; cooling zone 

1 mofr ix 

flow ---I 

t,(t#~ = O,<) = r2(@ = G3,h--t) (6) 

tit4 = $,,i> = tz(4 = O,h-0. 17) 

The system of equations (3) may be rewritten in 
dimensionless form by introducing new non-dimen- 
sional quantities mentioned in the nomenclature 

89, 
>;- = NTUmj(-9, +I),) 

(8) 

! 

iioj 
;G = ~~~i(~~-~~~, j= 1.2. 

I _j 
rh 

The dimensionless boundary conditions are 

Oi(P,Z = 0) = f;(cp)> .i = 172 (9) 

!J,(rp = 0,z) = Q*((P = 1, I-z) (10) 

9,((p = l,z) = &((P = 0,l -z). (11) 
FIG. 1. Coordinate system and schematic represcntatlon 
of the problem under consideration for the rotary heat The solution of the system of equations (8) expressed 

exchanger. by 3s and Bes functions for a crossflow recuperator 



was presented by tach [16]. His solution is used here 
for each gas-matrix zone. Assuming that 

T; = const. and YZ = const. (12) 

one has boundary condition (9) in the form 

el(rp,z = 0) = 1 (13) 

B,(rp,z = 0) = 0. (14) 

Substituting relations (13) and (14) into the solutions 
[16] and having made the necessary integrations one 
obtains : 
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To find the solution of the above problem (19) the 
method of successive approximations may be applied. 
However, this procedure is too complicated to be 
carried out analytically. System (19) can be easily 
solved in a numerical way [2] by using the colloca- 
tion method which reduces the problem into a sys- 
tem of linear equations. The latter was used here 
(Appendix A). 

for the temperature of the matrix in the heating 
zone 

3. THE SOLUTION AT 1, > 0 

In this case the energy conservation equations 
(coordinate system in Fig. 1) are as follows : 

S,(rp,z) = S,(O,z)e-NTuml~ 

+ ‘3,(O,p)e- 
s 

NrU,,C,--NTUl(r--p) 
0 a2tj 

x Bes,(NTU,,NTU,rp,z-p) dp 

+e-NT”m~~p-NTLI~*Bs,(NTUml cp, NTU,z); (15) 

for the temperature of the gas in the heating zone 

B,(cp, z) = e- NTum,rp-NTulr Bso(NTU,,,, cp, NTU,z) 

I 
+NTU, 

s 
%(0,4 e- 

NTUm,rp-NTU,(~-a) 

0 

= ajY(z+j)+(l-&)~m~ (20) 

epjcPjoj!$ = ajY(tj-T,), j = 1,2 ! 
subject to boundary conditions 

x Beso [NTU,, NTU, (z-6), cp ] d6 ; (I 6) 

for the temperature of the matrix in the cooling 
zone 

9,((p, z) = L&(0, z) edNT”mlP 

+ 
s 

‘UO, p)e- 
NTUmZq--NTU~(~-p) 

0 

T,(4,{ = 0) = T;, j= 1,2 (21) 

t,(ti = 030 = t,(9 = $2,h-0 (22) 

tt(4 = ti*,i) = t2(4 = O,h--i) (23) 

atj [q5, (l = 0 and h)]/a[ = 0, j = 1,2. (24) 

By introducing dimensionless quantities defined in the 
nomenclature one can reduce the system of equations 
(20) to 

x Bes,(NTU,,,,NTU,rp,z-p) dp; (17) 

for the temperature of the gas in the cooling zone 

e2((p, z) = NTUz 
s 

‘&(O, S) e-NTu~~~-NTu~(Z-a) 
0 

x Beso [NTU,, NTU,(z-6), rp] d6. (18) 

The unknown functions 9,(0, z) and L&(0, z) in for- 
mulas (15)-( 18) must be obtained on the basis of 
boundary conditions (10) and (11). Setting relation- 
ships (15) and (17) into equations (10) and (11) the 
following system of integral equations is obtained : 

as. 
A = NTl_l 
arp 

,(-$+&)+f’e:ld29, 
m, I I 1 a22 

as. 
(25) 

_J = NTUj(gj-Bj), j= 1: aZ 
2. I 

The corresponding dimensionless boundary con- 
ditions are 

61(rp,z=O)= 1 (26) 
&((p,z = 0) = 0 (27) 

9,((p = 0,z) = Q2((P = 1,1 -z> (28) 

9,((p = l,z) = 9,((p = 0, l-z) (29) 

aGj [cp, (Z = 0 and l)]/az = 0, j = 1,2. (30) 

The solution of the above problem is given in ref. [ 141 
(Appendix B) in the form of a series : 

for the gas temperature in the heating zone 

i 
9,(0,z)edNTumI+ c %(O,de- NTU,,,, -NT.!',@-p) 

Jo 

x Bes, (NTU,, NTU,,z-p)dp--9,(0, l-z) 

=-e -NT”ml-NT”lr Bs,(NTU,,,,, NTU, z) (19) 

S,(O,z)--&(O, 1 -z)~-~~~,Z 

s 1-z 

- 92@, A e- NTU,,-NTU,(l--z--p) 

0 
e,(rp,z) = 1 - f Ak e--P:~+‘z.P 

k=O 

x Bes,(NTU,,,2NTU2, 1 -z-p)dp = 0. J x [e(‘~.*-‘2.JL - cos (rjkz) + Bk sin (r3,k~)] ; (3 1) 
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for the matrix temperature in the heating zone 

~,((P,z) = 1 - f Ak c~~:~+rZ.? 
k=O 

for the temperature fields of the matrix 

d, = 

(32) 

Similar formulas for temperature fields in the cooling 
zone are presented in Appendix B. 

4. THE EFFECT OF MATRIX HEAT CONDUCTION 

This effect was determined by comparison of tem- 
perature fields calculated on the basis of the solutions 
presented in Sections 2 and 3. In Figs. 2-7 are pre- 
sented the temperature fields in the rotary heat ex- 
changer at various Peclet numbers, NTU,,, and NTU 
values. The effect of longitudinal heat conduction was 
evaluated by calculating the distance between tem- 
perature fields. This distance d was described by for- 

mulas : 

for the temperature fields of gases in thej-zone 

d, = 

(33) 

(34) 

The computations of distances d or dm were performed 
on the basis of the solutions presented in Sections 1 
and 2. Numerical results are presented in Figs. 8- 11 
at NTU,, = 0.2 and 1 .O, respectively. 

The analysis of temperature fields presented in Figs. 
2-7 shows that the trends of temperature changes in 
the function of the coordinates are similar both when 
heat conduction is neglected (Peg- ’ = 0) or taken into 
account (Pe-’ > 0). The effect of longitudinal heat 
conduction makes the temperature of the gas at the 
outlet of the heating zone higher and the cooling zone 
lower as compared with the temperature of gases when 
heat conduction is not taken into account. It is a 
characteristic for calculated temperature fields of 
gases with regard to heat conduction that : 

(a) the temperature decreases in the direction of gas 
flow through the heating zone more rapidly than when 
heat conduction is not taken into account, next the 
trend diminishes, the graphs of the temperature fields 
at PC ’ > 0 and Pe ’ = 0 intersect and at the outlet 
the gas temperature is higher at PC ’ > 0 than at 
Pe-’ = 0; 

(b) the temperature increases in the direction of the 

1.0 
0.6 

B 

0.8 
0.4 

06 
0.2 

FIG. 2. Effect of matrix longitudinal heat conduction on temperature distributions of gases in rotary 
exchanger at constants: NTU, = NTU, = 6 and NTU,,,, = NTU,,,I,, = 0.2. 
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FIG. 3. 
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Effect of matrix lon~tudinal heat conduction on temperature ~st~butions of matrix in rotary heat 
exchangeratconstants: NTU, = NTUz = 6 and NT?&,, = NTU,,,Z =0.2. 

FIG. 4. Effect of matrix lon~tu~n~ heat conduction on temperature dis~butions of gases in rotary heat 
exchangeratconstants: NTU, = NTU, = 6 and NT&,,, = NTU,, = 1. 
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FIG. 5. Effect of matrix longitudinal heat conduction on temperature distributions of matrix in rotary heat 
exchangeratcons~n~: NTC', = NTUz = 6 and NTU,,,, = NTU,, = I. 

FIG. 6. Effect of matrix longitudinal heat conduction on temperature distributions of gases in rotary heat 
exchangeratconstants: NTU, = 6 and NTUz = &NT&,,, = 0.4,NTU,, = 0.5. 
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FIG. 7. Effect of matrix longitudinal heat conduction on temperature distributions of the matrix in rotary 
h~texchangeratcons~nts: NTU, = 6,NTiJ, = 8,NTU,, = 0.4,NTQ =O.S. 

FIG. 8. Effect of NTV, and Pe, on the distance d, (formula (33)) between temperature fields of gases in 
the heating zone at constants: NTU, = NTUZ, Pet = Pe,, NTU,,,I = NTU, = 0.2 (in the cooling zone the 

effect is identical). 
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FIG. 9. Effect of NTU, and Pe, on the distance d, (formula (33)) between temperature fields of gases in 
the heating zone at constants: NTU, = NTU,, Pe, = Pe, and NTU,,,, = NTU,,,* = 1 (in the cooling zone 

the effect is identical). 

FIG. 10. Effect of NTU, = NTUZ = NTU and Pe, = Pe, = Pe on the distance d,,, (formula (34)) between 
temperature fields of matrix in rotary heat exchanger at constants: NTU,,,, = NTU,,,> = 0.2. 
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FIG. Il. Effect of NTU, = NTU, = NTU and Pe, = Pez = Pe on the distance & (formula (34)) between 
temperature fields of matrix in rotary heat exchanger at constants : NTU,, = NTUm2 = 1. 

gas flow through the cooling zone more rapidly when 
Pr- ’ > 0 than when Pe- ’ = 0, next the trend 
decreases, the charts of temperature fields at Pe- ’ > 0 
and Pe-’ = 0 intersect and at the outlet of the cooling 
zone the gas temperature is lower at Pe- ’ > 0 than 
Pe-’ = 0. 

The temperature of the matrix changes in the direc- 
tion of the gas flow as follows : 

(a) at the inlet of the heating zone it is lower while 
it is higher at the inlet of the cooling zone at Pe- 1 > 0 
in comparison to PeC ’ = 0 ; 

(a) with an increase of Pe- ’ values the distance d 
also increases at NTU,,, = const. and NTU = const. ; 

(b) as NTU increases the distance d also increases 
at NTI/, = const. and Pe- ’ = const. ; 

(c) as NTU,,, increases the distance d decreases at 
NTU = const. and Pe- ’ = const. 

(b) at Pe- ’ > 0 the temperature of the matrix IIence one may conclude that the effect of longitudinal 

changes by a lesser degree than at Pe- ’ = 0, the charts heat conduction in the matrix is essential at small 

of the temperature fields at Pet ’ > 0 and Pe- ’ = 0 NTU, values. Moreover, the effect becomes greater 

intersect ; with an increase of Pe- ’ and NTU values. 

(c) hence at the outlet of the zones the temperature 
of the matrix is higher in the heating zone and lower 
in the other zone at Pe- ’ > 0 in comparison to 
Pe-’ = 0. 

5. CONCLUDING REMARKS 

Finally, the numerical experiments presented here 
show that the effect of heat conduction in the matrix 
is greater on the matrix temperature field than on the 
gas temperature. 

On the basis of the analytical solutions of model 
equations the effect of the longitudinal heat con- 
duction in the matrix on temperature fields of gases 
and matrix of the rotary heat exchangers was studied 
at the ranges of the dimensionless parameters in each 

In Figs. 8-11 the influence of the heat conduction 
is shown on distances d and d,,, obtained from for- 
mulas (33) and (34). As shown the distance d between 
temperature fields calculated at Pe- ’ > 0 and 
Pe- ’ = 0 changes as follows : 



gas matrix zone as follows : 

0.2< NTU, < 1 

l<NTU<lO 

0.005 < PC ’ < 0.1. 

The numerical experiments reported in this paper have 
shown that heat conduction may essentially affect the 
temperature fields in rotary heat exchangers. The 
influence is greater for the matrix than for the gases 
and particularly evident at small NTU, values. 
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APPENDIX A 

(1) Necessary integrals for rewriting the solutions [ 161 in 
the form of equations (15)-( 18) are 

‘p 
NT&,, 

s 
e-NTU~~,c’+~*)-“7u~z Bes, [NTU,,,, NTU,(q&i),z] dd 

0 

f?~(q,z=O)=O 

@(cp,z=O)=O 

l-q((p = 0,z) = 9f((p = 1, l-z) 

1-9:((p=l,z)=9f((p=0,l-z) 

d$:[(p, (Z = 0 and I)]/& = 0 

&9t[(p, (z = 0 and l)]/i?z = 0. 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

From equations (B3) one can determine 9: 

=e NTud NTL;z Bs I (NTO,, cp, NT(l,z) (A 1) (BlO) 
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=e -NT”,’ ,e- NTUmp BsO(NTU,(p, NTU, z) - 11. jA2) 

(2) The numerical form of the system of integral equations 
(19). The algebraic elements of equations (15)-(18) are 
denoted as follows : 

K,(z,p) = em NTL’~~-‘NT”~(z-i”Bes,(NTU,, NTU,,z-p) 
(A3) 

P(z) = -e- NTU,~~NrUls Bs, (NT&,,,, NTU,z) (A4) 

&(z,P) = em NTU,,-NTU~(‘-z~~) Bes, (NTU,,NTU, 

I --r-p). (A5) 

-[em Nr”~~+C,~~(Z,,Z”~,+l)192(0,Z”-~+~) = 0, 

i= l,...,n-I 1 

9,(O,z,) -e-“T”mzS,(O,z,) = 0. , 

After solving the above system of equations (A7) one obtains 
S,(O, zi) and 9,(0, zi) values at each point (i = 1,. , n) of 
the collocation. 

APPENDIX B. THE SOLUTION OF THE ENERGY 
CONSERVATION EQUATION AT I, > 0 

(1) The heating zone 

By introducing new functions for the zone 

BT(cp,z) = 1-@,(%Z) 

@?((P,z) = I-S,(cp,z) 

system (25) can be written in the form 

(Bl) 

(B2) 

aq 
-= NT&,(-3:+B:)+Pee,‘s 
acp 

ae: 
z = NTU,@:-0:). 

(B3) 

Now, boundary conditions (26)-(30) may be given as fol- 
lows : 
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and relationship (BlO) is substituted into equation (B3). As 
a result one has 

ae: i aze: -+-- 
acp NTU, harp 

= Pe;’ 
a*e: i a-le: 
p + NTU, az’ > 

NT&,,, 80: ~- 
-NTU,az. WI) 

This equation will be solved by the method of separating 
variables. To do this the solution of equation (Bl 1) is con- 
structed in the form of the product 

Wrp, z) = F(rp)Z(z). (B12) 

Substituting equation (B12) into equation (Bl 1) one obtains, 
after separating variables, the following ordinary differential 
equations : 

dF+p+ 0 

drp (B13) 

$+p’Z=O. (B14) 

The general solution of equation (B13) has the form 

F(p) = const. exp (-$rp) (Bl5) 

while 

Pe; ’ 
mx3+Pe;‘x2- 

1 

is a characteristic equation for a linear homogeneous differ- 
ential equation (B14). The $-values are chosen in such a 
way that equation (Bl6] has one real root, r, and two 
complex conjugate roots, r; = r,+irj and r; = r,-ir,, In 
this way boundary conditions (B4) and (BS) can be satisfied 
simultaneously. The real solution of equation (B14) has the 
form 

Z(z) = Ae’l’+e’~[Bcos(r,z)+Csin(r,z)]. (B17) 

Taking into account expressions (BlO) and (B12) one can 
rewrite boundary conditions (B4) and (B8) in the form 

Z] -0 i-0 - (B18) 

0 (B19) 

0. 0320) 

Taking into consideration solution (Bl7), on the basis of 
conditions (Bl8)-(B20), one obtains a homogeneous system 
of three linear equations 

1 1 0 

a b c 

ae’l e’z[bcos(r,)-c sin (rJ] e’t [b sin (r3) +ccos (r,)] 1 
A 0 

XB=O [l [I WI) 

c 0 

The linear homogeneous system (B21) has non-zero solu- 
tions if its determinant is equal to zero. Hence one obtains 
the following transcendental equation : 

uce’l-++(b*-ab+c*) sin (rj)-uccos (rJ = 0 (B25) 

on the eigenvalues 11’. Equation (B25) has successively 
increasing non-negative roots (k = 0, 1, . , . , co). Now equa- 
tion (B21) can be rewritten in the form 

[bt :][Ej=[--ziJ W6) 

Hence one obtains 

Bk = -A,, C, = A&, /Sk = (bk-u&k, k = O,l,. 

(~27) 

Substituting equations (B27) into equation (B17) one 
obtains the eigenfunctions Z, as follows : 

Z,(z) = Ak e’2* [e(‘~~-‘~+)Z-cos (r3tz) 

+A sin (rg,kz)], k = 0, 1,2,. (B28) 

After substituting equation (B28) into equation (B12) and 
also taking into account equations (Bl), (B2), (BIO) and 
(Bl5) one finally obtains the solutions in the form of equa- 
tions (31) and (32). 

(2) The cooling zone 

By making use of a similar procedure as above one obtains 
solutions of the energy conservation equations for this zone 
in the forms : 

(a) gas temperature 

e,(cp,z) = f Dk ec++W 
t-0 

x [eDI*-S@-cos (sjcz) +yk sin(s,&z)] ; (B29) 

(b) matrix temperature 

Qz(q,z) = f D, e-V&+sul [e(sl*-s2*)z 
&ll 

x (1,s). (~-l)u)s(sIL2) 

+ yn+ w sin (sj+z)]. (B30) 
2 > 

Coefficients At and Dk are determined on the basis of 
boundary conditions (B6) and (B7) by the collocation 
method. 
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EFFET DE LA CONDUCTION THERMIQUE LONGITUDINALE, DANS LA MATRICE, 
SUR LE CHAMP DE TEMPERATURE DANS UN ECHANGEUR TOURNANT 

R&m~n considere deux modeles pour decrire les phenomenes de transfert dam des echangeurs de 
chaleur rotatifs : l’un neglige et l’autre prend en compte la conduction de chaleur dans la matrice. Les deux 
modeles utilisent les equations de conservation d’energie qui sont resolues par des mtthodes analytiques. 
A partir de ces solutions est Ctudie l’effet de la conduction longitudinale de matrice sur les champs de 

temperature dans le gaz et la matrice. 

DIE AUSWIRKUNG DER LANGSWARMELEITUNG AUF DAS TEMPERATURFELD 
IN EINEM ROTIERENDEN W~~ETAUSCHER 

Z~nf~-In dieser Arheit werden zwei Mode~va~anten untersucht, die Trans~~vorg~nge in 
rotierenden W~~etau~hem heschreihen : Ein Modell ~~cksichti~ die W~eleit~g, das andere nicht. 
Beide Modelle werden durch das System der Ener~~r~tungs~eich~gen beschriehen, die durch analy- 
tische Methoden gel&t werden. Aufder Basis dieser LGsungen wird die Auswirkung der LZngswiirmeleitung 

in der Matrix auf die Temperaturfelder in der Matrix und in den Gasen untersucht. 

BJIRIIHME IIPOAOJIbHOltl TEI-IJIOI-IPOBOJ&IOC’TM MATPHHbI HA TEMI-IEPATYPHbIE 
IIOJIl B POTOPHbIX TEIIJIQO~MEHHHKAX 

AamoTa~PaccMorpenh nae Monenss, onncbmaiouuie irnnemni neperioca a poropriux rennoo6~erimi- 
xax: B oruioil H3 mix nrHopxipyercn, a BO ETOpO% yxrirbreae3ca TfSL’iOlipOBOJWOCTb r4arpiinbr. Q6e 
Moaenn conep~ar csicrehiy ypannennl coxpar-remia 3~eprmi, 5roropHe pemaro~cs ~~~THY~~~MH 
M~TO~MH. Ha oc~one 31~~ peruens& srccxemercn nxnnnne n~~o~~o~ Te~on~ao~~~ Marpmmi 

ria pacn~x~~ rerimeparypbi B neti si ra3ax. 


